12

Semiconducting Nanostructured Materials

for Bioelectronics

Jayshree Khedkar

Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, India

Anil M. Palve

Department of Chemistry, Mahatma Phule ASC College, Panvel, Navi-Mumbai, India

Ram K. Gupta

Department of Chemistry, National Institute for Materials Advancement, Pittsburg State University,

Pittsburg, USA

CONTENTS

12.1 Introduction......................................................................................................................187

12.2 Semiconducting Materials and Their Advantages for Bioelectronics....................189

12.2.1 Wide Bandgap-Based Materials for Bioelectronics .....................................189

12.2.2 Conducting Polymer-Based Materials for Bioelectronics...........................190

12.2.3 Carbon-Based Materials for Bioelectronics...................................................190

12.3 Methods Used for Fabrication of Bioelectronics........................................................190

12.3.1 Top-Down Approach........................................................................................192

12.3.2 Bottom-Up Approach .......................................................................................192

12.4 Applications of Bioelectronics.......................................................................................193

12.4.1 Biosensors ...........................................................................................................193

12.4.2 Wearable and Implantable Devices................................................................195

12.4.3 Printable/Flexible Bioelectronics....................................................................197

12.5 Conclusions and Future Perspectives..........................................................................197

References ....................................................................................................................................198

12.1 Introduction

Over the last several years, electronic technologies have revolutionized biology and

medicine. A variety of bio-devices have been developed to date, all of which have aided

in this revolution. A multidisciplinary approach integrating material science, microelec­

tronics, and bioengineering enabled these bioelectronics breakthroughs [1]. Due to the

significant developments in materials science, notably nanomaterial-based technology,

the field of bioelectronics has gained new dimensions. In biomedical studies, devices that

are durable and demonstrate long-term performance in soft tissues or physiologic en­

vironments are pivotal [2]. The various biomedical applications such as monitoring,

DOI: 10.1201/9781003263265-12

187